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Abstract

Employing unique hand-collected data on correspondent relationships for all U.S.
banks and a methodology that captures bank credit risk and network position, we
study how roughly 9,000 bank failures altered the network of financial institutions dur-
ing the Great Depression. We show that the crisis raised systemic risk by 33%, with
much of this increase concentrated at the largest banks, and that network density am-
plified the downturn. In particular, the pyramid-like network topology increased the
system’s fragility and risk-spreading propensity, resulting in an additional 255 bank
failures. Our measure of systemic risk is also a strong predictor of individual bank sur-
vival during the 1930s. Further, systemic risk increased (decreased) the probability of
bank survival for Federal Reserve members (nonmembers), and 278 more banks would
have survived the banking crisis had all commercial banks been required to join the
Fed. Branch-banking dampened the positive effect on survival stemming from a bank’s
central position in the network.
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1 Introduction

The Global Financial Crisis (GFC) focused attention on the importance of understanding

the connections between financial institutions, which have been seen as a mechanism for

propagating distress (Allen and Gale, 2000; Elliott et al., 2014; Acemoglu et al., 2015; Allen

et al., 2010; Freixas et al., 2000; Dasgupta, 2004; Caballero and Simsek, 2013). Researchers

and policymakers have sought a better understanding of the characteristics that predispose

financial systems to risk as well as the potential negative macroeconomic externalities when

“systemically important” financial institutions suspend or fail.1

In response, researchers have developed new analytical measures aimed at quantifying

institutional as well as aggregate risk.2 These tools provide new insights into the interpre-

tation of systemic risk, although researchers continue to explore their properties and utility

for policymakers. To date, studies have largely focused on the period around the GFC.

This is somewhat surprising, given the well-documented challenges of measuring connections

between the “shadow banking system” and the regulated sector of the 2000s, a need to un-

derstand the “out of sample” properties of these tools, and the benefits from comparing the

GFC to earlier crises.

To shed further light on these issues, we analyze how the largest financial crisis of the 20th

century—the Great Depression—altered the network of financial institutions in the United

States. The topology of the network, the geographical distribution of risk, and the network

positions of the thousands of failed banks during the early 1930s are unlike those of the Great

Recession. Hence, our analysis draws attention to how these features of networks impact

banking crises and systemic risk measurement. We construct network measures using a new

data set of correspondent banking relationships for all commercial banks and trusts in the

United States in 1929 and 1934. In contrast to approaches that estimate financial linkages

from financial flow data or price and return co-movements, our measure of connectedness

1The Dodd Frank Act (2010) defines a systemically important financial institution (SIFI) as one that is
large, complex, linked to other financial institutions and “critical,” providing services that may have few
close substitutes. For an example of a model linking systemic risk externalities to measurement of it, see
Acharya et al. (2017).

2For a survey of methodologies, see Bisias et al. (2012).
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uses stated bank correspondent relationships based on historical bank records.

We use these novel, hand-collected data as well as balance-sheet information on every

networked commercial bank to develop measures of individual bank risk and systemwide risk

before and after the banking crises of the early 1930s. Our systemic risk measure incorporates

the credit risk of an individual bank as well as its position in the network. Our unique data

and methodology allow us to examine where risk resided in the network, how much of it was

concentrated in the largest banks in the system, and how the failure of roughly 9,000 banks

between 1930–33 altered risk within the system. Further, we assess whether the pyramid-

like structure of the banking system that existed prior to the Great Depression concentrated

risk, and how counterfactual failures or interventions to rescue systemically important banks

would have changed overall systemic risk. Finally, our microeconomic data on all commercial

banks in the system allow us to analyze how our 1929 network measures of connectedness and

systemic risk affect the probability of surviving the Great Depression and provide a novel

test as to whether the inclusion of network-based systemic risk measures improves model

prediction of bank failure.

We find that the massive banking crisis of the early 1930s reshaped the network, raising

systemic risk per bank by 33%. Large banking crises, such as the Great Depression, appear

to have enormous effects on systemic risk, validating the importance of tools for systemic

risk measurement such as what we develop in this paper. However, knowing how a crisis

affects an average bank’s systemic risk requires mapping the network relationships for the

entire banking system, not just the largest banks, as has been common in studying the

Great Recession. Our comprehensive dataset includes all US commercial banks and our

methodology permits us to compute average results as well as bank-specific measures of

systemic risk, enabling us to develop a set of previously unknown facts and counterfactuals

about the banking crisis of the Great Depression.

Our results show that the banking crisis of the Great Depression redistributed risk,

increasing the contribution coming from the 20 largest banks in the system by 5 percentage

points. The distribution of risk thus became more concentrated at the top of the system. For

example, Continental Illinois, which was the most connected bank in 1929, saw thousands
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of its connections wiped out; however, because the crisis made its balance sheet riskier,

Continental’s systemic risk increased. The finding for this particular bank reflects a broader

and previously unearthed fact about the Depression: while the network on average became

less connected as a result of the banking crises and the failure of thousands of banks, as a

whole, risk emanating from the balance sheets of surviving banks actually increased.

Further, using our bank-level data set, we are the first to demonstrate that the pyramid-

like structure of the commercial banking system, which had evolved in 19th century but

persisted through the start of the Depression, had direct consequences for systemwide risk.

Relative to random graph and bootstrapped scale-free network topologies, the 1929 bank

pyramid-shaped topology exhibited a higher fragility and a greater propensity for spreading

risk as it concentrated banking interactions at particular nodes in the network. And, during

panic periods, the pyramid shape of the network left positionally-important banks (e.g., re-

serve and central-reserve city banks) exposed to large clusters of banks making simultaneous

withdrawals through the correspondent network in order to fend off local runs a feature that

magnified systemwide risk. We show that if the 1929 network had, instead, been a random

graph network, 255 additional banks would have survived the Great Depression. This result

supports recent theoretical work showing that interconnectedness can have a negative effect

on systemic stability when networks are dense (Acemoglu et al., 2015) and draws attention

to the importance of network topology in understanding where systemic risk emanates.

The 20 systemically riskiest banks in 1929 were largely the most connected, but had below

average ex ante default risk. Only one failed, resulting in an overall increase in systemic risk

per bank by 1.59%. While they were centrally connected and thus “systemically important,”

their better financial position and lower credit risk prior to the crisis allowed them to weather

the storm of the Depression. That said, had all 20 of these banks failed, the crisis would

have been much worse: systemwide risk would have risen by over 50%. Instead, the severe

banking crisis of the early 1930s was dominated by the failure of small and medium-sized

banks; on average, they had higher ex ante credit risk than their larger counterparts. The

suspensions of the 30 largest banks during the Great Depression only increased systemic risk

by 8.33%. The Depression represents a vivid example of a severe crisis that did not occur in
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the upper tail of the size distribution. These features of systemic risk stand in contrast to

the Great Recession, a crisis dominated by large financial institutions, and draw attention

to two additional contributions of our research. First, to be externally valid, systemic risk

measurement tools need to account for crises that include all banks, not just the upper tail

of the size distribution. Second, to understand why crises differ in terms of systemic risk

outcomes, risk measurement tools need to capture both connectedness and default risk.

Using rich micro level data on individual banks, we also analyze how bank-specific in-

formation, network features, and regulatory characteristics of the banking market affect the

probability of bank survival. We demonstrate that network position, systemic risk measures,

and interactions involving the network significantly improve the sequential out-of-sample

predictive fit of the model, obtaining a posterior model probability of approximately 1 and

correctly classifying hundreds of additional bank survivals and failures. Further, we construct

econometric models that allow us to consider how network and banking market character-

istics affect the survivorship of individual banks during the Great Depression in order to

explore drivers of distress that have not previously been tested in the literature. Our results

show that a bank’s ex ante systemic risk score lowers survivability during the Great Depres-

sion – consistent with theory and validation of our particular approach to risk measurement.

We show that the impact of the network and systemic risk on the probability of bank survival

vary greatly as one conditions on banks’ geographical locations and institutional features.

For Federal Reserve member banks, an increase in systemic risk increases the probability

of survival. For nonmembers, an increase in systemic risk decreases the probability of sur-

vival. This finding has interesting implications for the wellspring of America’s “Too Big To

Fail” policies. We document that 95% of the top 200 systemic risk contributors in 1929

were Federal Reserve members. These banks were allowed access to the discount window, a

particular advantage for banks located in the Atlanta Federal Reserve District, which were

granted emergency liquidity during the panics of the Great Depression (Richardson and

Troost, 2009; Ziebarth, 2013). However, regardless of location, and thus more generally,

Federal Reserve member banks more than likely had improved survivorship because they

often received large capital injections from the Reconstruction Finance Corporation (RFC).

The RFC’s chairman seems to have paid particular attention to large institutions in deciding
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which banks to grant assistance and to allow to be reopened after the banking holiday of

March 1933 (Jones, 1951), which in the early 1930s, translated into well-connected Federal

Reserve member banks. Indeed, had all non-member banks been able to join the Federal

Reserve System prior to the start of the banking crisis of the 1930s, we estimate that, ceteris

paribus, 278 additional banks would have survived the Great Depression. We also show

that a central position in the correspondent network was often advantageous. However,

the effectiveness of the correspondent network diminishes as the amount of branch bank-

ing in an area increases, thus demonstrating the network tension between branching and

correspondent systems.

The findings in this paper relate to the literature on systemic risk measurement and the

evaluation of crises. Early-generation systemic risk measures estimated network linkages

using financial flow data. For example, Billio et al. (2012) construct networks of financial

institutions using bivariate Granger causality regressions based on inferences from asset

returns. Our analysis draws attention to physical connectedness, which has been explored

more recently by Burdick et al. (2011) and Brunetti et al. (2019) for U.S. and European

banks, respectively, during the 2007-08 crisis. Our paper adds to the literature on systemic

risk measurement in several additional ways: we construct the before and after network to

assess how crises reshape systemic risk, illustrating this for a period other than the GFC,

and compare the pyramid-shaped correspondent banking network in existence in 1929 to

other network structures in order to demonstrate how topology can predispose networks to

additional risk. We examine the entire U.S. banking system at the bank level, rather than for

a subset of publicly-traded institutions, enabling us to examine how, as a result of a crisis,

risk moves across space and to demonstrate that systemic risk measures improve model

prediction of bank failure – an important finding for policymakers. Clearly, graph-theoretic

models would have been useful in the prediction of bank failure in the Great Depression.

Thus, we provide a complete view of how banks were networked, why it mattered for the

Great Depression, and how the network interacted with regulatory and legal systems.

Our paper also contributes to the fast-moving, complementary literature evaluating fi-

nancial networks in earlier periods, which includes research on the national banking era
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(Anderson et al., 2019; Calomiris and Carlson, 2017; Brownlees et al., 2017; Dupont, 2017),

the founding of the Federal Reserve (Carlson and Wheelock, 2016, 2018; Anderson et al.,

2018), and the 1930s (Richardson, 2007; Heitfield et al., 2017; Mitchener and Richardson,

2019). Our paper is the first to map the entire correspondent network of commercial banks

(both member and nonmember banks), before and after the banking crises of the Great

Depression, allowing us to show how banking distress changed network relationships and to

compute measures of systemic risk for all commercial banks for the largest U.S. financial

crisis of the 20th century. Although previous studies have emphasized the role of individ-

ual banks or groups of banks in precipitating banking panics (e.g., Friedman and Schwartz

(1963) and Wicker (1996)) and the role of fundamentals in explaining subsequent distress

(Calomiris and Mason, 2003; White, 1983), our research breaks new ground by quantify-

ing where bank-specific risk resided prior to the start of these panics for all banks in the

network and how institutional features and policies – such as branching systems, Federal

Reserve membership and rescue packages – shaped systemwide risk and subsequent bank

survivorship conditional on a bank’s position in the network.

2 Data

To construct network measures and to compute individual bank risk and systemwide risk,

we use information on the correspondent relationships for all commercial banks and trusts

in the United States in 1929 and 1934. Institutional linkages, as used here, report on ob-

served network relationships rather than those inferred from data, although, like many other

network measures for banks, the data do not permit quantification of the intensive mar-

gin (i.e., we lack information on the precise size of the balance sheet connections between

financial institutions). Correspondent relationships initially arose to service the needs of cus-

tomers conducting business in larger cities and the financial centers of the United States in

the 19th century, and were later reinforced by banks that met mandated regulatory reserve

requirements by maintaining balances in larger city banks.

We collected data on correspondent relationships for the entire banking system in 1929

(roughly 26,000 banks) and in 1934 (approximately 16,500 banks) so that we could analyze
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Figure 1: Illustrating correspondent relationships.

how the system changed as a result of the banking crisis of 1930-33.3 These data, as well as

information on each bank’s balance sheet and other characteristics (location, population of

city or town, date of first charter, Federal Reserve membership, etc.), were hand collected

from Rand McNally Bankers Directory (July 1929, September 1934). On the liabilities side,

the publication lists four items: paid-up capital, surplus and profits, deposits, and other

liabilities. Rand McNally also records four categories on the asset side of the ledger: loans

and discounts, bonds and securities, miscellaneous assets, and cash and exchanges (due from

banks). In describing directional relationships within the network, a “respondent” is de-

fined as a bank that initiates a business relationship with another bank for its customers

or itself (i.e., to satisfy reserve requirements by holding interbank deposits at a bank in a

large city). A “correspondent” bank is the bank that satisfies those business needs. Because

Rand McNally reports these precise correspondent relationships, we coded the relationships

directionally, as illustrated in Figure 1. Dexter State Bank located in Dexter, Iowa, lists two

banks as its correspondents in 1929: Iowa National Bank (Des Moines, IA) and Continen-

tal Illinois Bank and Trust (Chicago, IL). The correspondent bank Iowa National Bank in

turn lists First National Bank (Chicago, IL), Continental Illinois Bank and Trust, Midland

National Bank (Minneapolis, MN), and Guaranty Trust Company (New York) as its corre-

spondents. Since we lack data on the intensive margin, we follow other analyses of financial

networks and treat linkages equally (i.e., no adjustments are made for differences in flow).

3Foreign correspondents exist for some large city banks in locations such as New York and San Francisco.
These are excluded from our analysis.
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3 The Correspondent Banking Network

We begin by describing the contours of the network just prior to the Great Depression. In

July 1929, 25,144 respondent banks and 3,602 unique correspondent banks existed. Our

data set contains the complete list of relationships between these financial institutions. This

matrix is “sparse” since many of the elements are zeros.

In 1929, there are 3,062 banks that were both correspondents and respondents. Hence,

the number of banks having at least one relationship with another bank is 25,684 (= 25, 144+

3, 602−3, 062); this determines the number of nodes, n, in the network graph. Correspondent

banks that are not also listed as respondents are typically non-depository institutions and

international banks, for which we do not have balance sheet data. Finally, the relationship

between respondent and correspondent banks is a many-to-many relationship, meaning each

respondent bank may be related to more than one correspondent bank, and vice versa.

The adjacency matrix for the network is defined as A(i, j), i, j = 1, 2, ..., n, where n =

25, 684 for 1929. A(i, j) = 1 if respondent bank i has a relationship with correspondent

bank j, else A(i, j) = 0. Since the correspondent-respondent relationship is directional, A

is not symmetric, A(i, j) 6= A(j, i). The total number of links in the network is 70,679. In

examining their distribution, most respondent banks have very few correspondents. On the

other hand, correspondent networks can be very large – in the thousands – a feature that

has implications for the shape of the network. Figure 2 plots the locations of correspondent

and respondent banks. If a bank is both a respondent and correspondent, it is plotted as a

correspondent bank. The size of the point for correspondent banks is proportional to 1 plus

the natural logarithm of the number of connections (degree) of the node and is plotted in

blue color. Respondents are in red. Country banks, the term used to describe banks located

in small towns and cities, are close to their correspondents, which explains the widespread

geographical coverage by correspondent banks. Correspondent banks appear to be located

in larger cities.

As has been well documented by economic historians, waves of banks failures between
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Figure 2: Respondent banks in red and correspondent banks in blue, sized by relative degree of
each bank for 1929 and 1934. Respondent banks place money with correspondent banks. Corre-
spondent banks are plotted in blue and have points that are two times 1 plus the natural logarithm
of the node’s degree. The plot in the left is for 1929 and the one on the right is for 1934.

1930–1933 irrevocably altered the US financial system.4 Distress occurred throughout the

country, but especially in rural areas and smaller towns. Figure 2 shows how the network

changed in response to the more than 9,000 banks that exited the system. Between 1929 and

1934, the number of banks in the network declined by 36%, from 25,684 in 1929 to 16,446 in

1934 and the number of correspondents fell by 41% (from 3,602 to 2,134).The total number

of links in the network fell by 41%, from 70,583 in 1929 to 41,313.

3.1 Network Statistics

3.1.1 Theory and Examples

In this section, we introduce network and systemic risk measures that are employed to

understand the 1929 and 1934 networks, and the changes occurring between these two dates.

We begin with a simple example network in order to obtain a better understanding of network

topology and its relation to our systemic risk metric. Figure 3 shows a network of just 6

banks (nodes) and 15 links. It is a directed network, so that a relationship can run both

ways, and the network is unweighted to correspond to the dataset in the paper, i.e., all

links have unit weight and point from the bank placing money (the respondent) to the one

receiving it (the correspondent). Some links are uni-directed and have one arrowhead and

4For example, see Friedman and Schwartz (1963) and Wicker (1996).
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Figure 3: A network of 6 nodes and 15 links.

others are bi-directed and have two arrowheads. Nodes are numbered from 0 through 5.

The network may be represented by an “adjacency matrix” shown in equation (1). The

matrix shows which bank on the rows connects to which bank on the columns. (Banks are

numbered 0 through 5.)

A =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
1 0 0 0 0 1
0 1 1 0 0 1
0 0 1 1 1 0


(1)

Understanding which nodes have the greatest influence in the network, i.e., those that

are the most critical, is of particular interest to policymakers who might want to identify

“too big to fail” or systemically important financial institutions (SIFIs). To understand this

feature of our network, we use several variants of the most common measure, centrality:

degree, eigenvector centrality, and betweenness centrality.

Degree: Centrality can be measured by the number of connections a node has, i.e., its

“degree.” Of course, degree centrality ignores the fact that a node with few connections

may still have a huge influence if it is connected to a node with many connections.5 Degree

centrality may be varied by computing degree to a chosen depth, say three levels deep, a

5For example, in a social network, one may have very few friends, but if one of them is Mark Zuckerberg,
then one still has a lot of influence.
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parameter chosen at the discretion of the modeler.

For the six nodes in our example network, the degrees are {5, 5, 7, 4, 4, 5} for a total of

30 (twice the number of links, 15, because each link adds a degree to two nodes). We see

that node #2 has the greatest degree. Each node’s degree can be apportioned into in-degree

(links coming in) versus out-degree (links going out). In the context of the paper, we may

think of nodes with a greater proportion of in-degree as correspondent banks and nodes with

greater out-degree proportion as respondent banks.

Eigenvector centrality is a more general formulation (Bonacich, 1987; Bonacich and Lloyd,

2001), where centrality (ci) of a node is defined as a function of the centrality of the nodes

to which it is connected, through the network adjacency matrix, A. This leads to a circular

system of n simultaneous equations:

ci =
n∑
j=1

Aijcj, ∀i = 1, 2, ..., n. (2)

This system of equations may be written in matrix form such that:

λc = A · c (3)

where λ is a scalar quantity, c is a vector of size n, and as before, A ∈ Rn×n. Equation (3) is

an eigensystem, and one solution to this system of equations is the principal eigenvector in

an eigenvalue decomposition of adjacency matrix, A. This is known as the centrality vector,

which contains n components, ci, i = 1, 2, ..., n. Eigenvalue centrality is equivalent to degree

centrality computed with infinite degree depth.

A computation of eigenvector centrality for the example network gives the following

result for the six nodes: {0.5727, 0.5034, 0.5493, 0.2982, 0.0653, 0.1541}. Notice that node

#0 has the highest eigen vector centrality even though node #2 has the highest degree.

The first three nodes derive their influence from their position in the network relative to the

other nodes. They have relatively more in-degree.6 Since the banking network in the Great

Depression was known to be pyramidical, nodes with a higher extent of in-degree will be

higher up in the pyramid.

6For example, this is how researchers define the importance of a web page in the Google search algorithm,
where pages with a large number of links pointing to them are more important.
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Betweenness centrality assigns importance to a node in a network if it sits at the intersection

of paths between other nodes. In this context, a node has importance because it acts as

an information “broker.” Betweenness centrality of a node is a function of the number

of shortest paths in the graph that pass through that node. Following Freeman (1977),

betweenness centrality for a node v is defined as follows:

bv =
∑
i,j

g(i, v, j)

g(i, j)
(4)

where g(i, v, j) is the number of shortest paths from node i to node j that pass through node

v, and g(i, j) is the number of shortest paths from node i to node j. The summation is taken

over all (i, j) where i 6= j 6= v and i 6= v.

The betweenness centrality for the nodes is {1.5, 0.5, 8.0, 6.5, 0.5, 5.0}. Notice that the

ordering is different than what we obtain from eigenvector centrality. This is to be expected,

since betweenness centrality assigns greater relevance to nodes that are intermediaries in the

network. Nodes at the top of the pyramid, while important, are less likely to be interme-

diaries. We will see this distinction between eigenvector and betweenness centrality in the

empirics that follow.

Systemic Risk Score: We combine the network adjacency matrix, A, with a composite risk

score for each bank in a vector denoted R, to create a single measure of overall systemic risk,

extending and modifying the metrics proposed in Das (2016) and Das et al. (2019). R is a

vector of credit quality score for each bank, where a higher score means poorer quality. Our

approach allows one to empirically estimate system-wide “exposure” despite not knowing

everything we might want about the financial network. (For example, data on balance-sheet

linkages between financial institutions is often opaque or incomplete, both historically and

today.) Composite systemic risk per bank, S, is thus defined as:

S =
1

n
·
√
R> · A ·R

=

√
R

n

>
· A · R

n
(5)

=
√
Q> · A ·Q

where n, as noted before, is the number of banks in the system, and superscript > denotes

the transpose of a vector or matrix. (Recall that R is an n-vector and A is a n× n matrix.
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Thus, Q is an n-vector.) Division by n is a normalization used to measure systemic risk per

financial institution and to account for the fact that the banking crises of the early 1930s

drastically reduced the number of financial institutions in the network by 1934. Since the

elements of R and A are all non-negative, S ≥ 0.

Equation (5) implies that systemic risk, as denoted by scalar quantity, S, increases if the

elements of R (individual bank risk) increase, holding n and A constant. Likewise, ceteris

paribus, if the elements of A (interconnectedness of banks) increase, systemic risk per bank

also increases. The systemic risk measure, S, may be thought of as a network-weighted

measure of composite credit risk in the banking system. If there are no network linkages,

then A is a zero matrix and S = 0.

We examine how this systemic risk score changes with risk levels, R. Assume that bank

i can either have low risk (Ri = 1) or high risk (Ri = 2). If all banks were low risk, the

vector of credit quality is R = [1, 1, 1, 1, 1, 1]. Using this vector, we compute a lower bound

for systemic risk, i.e.,

S =
1

n

√
R> · A ·R = 0.6455

But if all banks were high risk, i.e., R = [2, 2, 2, 2, 2, 2], then the systemic risk per bank would

be 1.2910 (an upper bound, assuming no change in network structure). This is exactly double

because the function S(R,A) is linear homogenous in R. These values are the lower and

upper bounds for S. We can examine the effect of increasing the risk of banks with low

eigenvector centrality, i.e., letting R = [1, 1, 1, 2, 2, 2], in which case S = 0.9428. But, if we

raise the risk of high centrality banks, then R = [2, 2, 2, 1, 1, 1] and S = 1.0274, as expected.

Both these values lie between the upper and lower bounds computed earlier.

Changes in the number of banks. Only two-thirds of the banks survived over the period

1929-1934. Bank failures change the network and systemic risk, S, may increase or decrease

depending on the centrality and credit quality of the failed banks. For example, suppose

all banks are high risk, i.e., R = [2, 2, 2, 2, 2, 2] and S = 1.2910. If a high centrality bank

exits (e.g., assume node #2), then we eliminate it from the adjacency matrix, A, and the

credit score vector, R, and recompute S, which in this case, falls to S = 1.1314. This

is understandable because, ex post, the removal of a hub bank makes the network less
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susceptible to risk spreading, leading to a lower systemic risk score. If the infected bank

remains in the system and has a higher (riskier) credit score, then, of course, S would increase.

In the ensuing empirical analyses, we present such effects as well. On the other hand, if a less

central bank (say #4) were removed, systemic risk would increase to S = 1.3266 because

more weight ends up at the central nodes. This example explains some of the empirical

results we see when comparing the network in 1929 and 1934.

S is an appropriate measure for our historical setting because: (1) it captures both con-

nectivity risk and credit risk; (2) it properly accounts for the directions of the correspondent-

respondent relationships because A is not symmetric; (3) the functional form of S is linear

and homogeneous which allows us to decompose the measure bank-by-bank and compute

individual bank contributions; and (4) it has attractive properties for prediction. Because S

is constructed from raw data matrices, as opposed to being the result of regression output,

it can be easily employed for prediction exercises without issues of estimation uncertainty.

Additionally, the properties of S align with the literature on systemic risk during crises.

Acemoglu et al. (2015) show that when the number of negative shocks in an economy are

large, highly connected network structures can be a source of systemic risk and instability.

As we showed in the theory and examples, as network connections in A increase, so does our

systemic risk score, S. Therefore, S captures the movement in systemic risk that would be

expected in crisis periods. Before describing S for the 1929 and 1934 networks (Section 4.2),

we detail the network topologies in the following sections.

3.1.2 Clusters, Degree, and Power Laws

We first examine the density of the network. Clusters, defined here as the number of disjoint

connected components, describe one aspect of network connectivity. In 1929, there were 31

such disjoint groups. Of these, there is one extremely large connected component of 25,576

banks (out of a total of 25,684). Therefore, the banking network was almost fully connected

in 1929. The remaining 30 components have sizes of 22, 12, 9, 6, and the rest have four

nodes or less.

For 1929, the mean degree of nodes in the network is 5.50 with a standard deviation of
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49.60.7 The median degree in the network is 3.0. The “degree distribution” of the nodes

is shown in Figure 4 for both 1929 and 1934. The left plots show nodes with degree less

than 50 while the right plots show nodes with degree greater than 50. The distribution is

extremely skewed: there are a large number of nodes with low degree and a few nodes with

very high degree.8 We can also examine the degree distribution by plotting the (log) number

of nodes against the (log) number of links (degree). The left panel of Figure 5 shows a

log-log plot of the network in 1929, where extreme nodes with degree greater than 50 have

been excluded. The quasi-linear and negative relationship of the log-log plot and the power

law coefficient (α = 1.65) suggest bank nodes exhibit the usual shape, slope, and power

law distribution characteristic of social networks (Barabasi, 2002; Barabasi and Bonabeau,

2003; Gabaix et al., 2003). Further, the node distribution can be compared to the asset size

distribution of banks in 1929. The right panel of Figure 5 shows a similar shape and slope

as the degree distribution; however, the power law is lower (α = 1.17). To a large extent,

the most well-connected banks are also the largest banks, fitting the modern policymaker’s

definition of “systemically important”.

By 1934, the number of clusters (disjoint groups) had fallen from 31 to 27, but the system

still retained one large connected component with 16,380 nodes out of a total of 16,446. The

mean degree of nodes in the network declined slightly between 1929–1934, from 5.50 to

5.02. Other than the median degree in the network falling from 3 in 1929 to 2 in 1934, the

frequency plots of the degree of nodes for 1929 and 1934 look quite similar: the 1934 system

still exhibits the usual power law distribution α = 1.60. We also examined whether the

network was different in 1934 versus 1929, by comparing the degree distributions in both

years using a Kolmogorov-Smirnov statistic. The K-S statistic is 0.1022 with a p-value of

0.0001, i.e., indicating that network structure changed significantly from 1929 to 1934, a

result we explore in more detail below.

7Note that the number of links per node is the number of links divided by the number of nodes, i.e.,
70679/25684 = 2.75. Since each link connects two nodes, it accounts for two degrees. Therefore, the mean
degree of the network is twice 2.75, i.e., 5.50.

8This is characteristic of a scale-free network. For a full exposition, see http://barabasi.com/f/623.

pdf. See also Barabasi and Bonabeau (2003).

16

http://barabasi.com/f/623.pdf
http://barabasi.com/f/623.pdf


Figure 4: Degree distribution in 1929 (upper plots) and 1934 (lower plots). The left panels plot
nodes with degree less than 50 while the right panels plot nodes with degree greater than 50.

Figure 5: Network Density and Assets. Log-log plot of the degree distribution in 1929 excluding
extreme nodes with degree greater than 50. We plot log degree on the x-axis and log of the density
function on the y-axis. For power-law densities, the function is f(d) = d−α. Taking logs we have
ln[f(d)] = −α ln(d). The power law coefficient is α = 1.65. The second plot shows the same for
bank asset levels, with a power law coefficient of α = 1.17.
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Table 1: Top 10 banks by eigenvalue centrality (normalized), along with their degree.

1929: Bank Name and Location EigenCent Degree

Continental Illinois Bank and Trust (Chicago, IL) 1.000 4,474
Chase National Bank (New York City, NY) 0.440 2,982
Central Hanover Bank and Trust (New York City, NY) 0.283 2,710
First National Bank of Chicago (Chicago, IL) 0.279 1,715
National City Bank (New York City, NY) 0.265 1,778
Guaranty Trust Company (New York City, NY) 0.226 1,652
First National Bank in St. Louis (St. Louis, MO) 0.181 1,113
Philadelphia National Bank (Philadelphia, PA) 0.181 1,127
Mercantile Commerce Bank and Trust (St. Louis, MO) 0.148 813
Union Trust Company (Cleveland, OH) 0.146 629

1934: Bank Name and Location EigenCent Degree

Chase National Bank (New York City, NY) 1.000 3,154
Continental Illinois Bank and Trust (Chicago, IL) 0.630 2,275
First National Bank of Chicago (Chicago, IL) 0.367 1,230
National City Bank (New York City, NY) 0.258 1,140
Philadelphia National Bank (Philadelphia, PA) 0.247 890
Central Hanover Bank and Trust (New York City, NY) 0.245 1,618
Guaranty Trust Company (New York City, NY) 0.237 1,004
First National Bank in St. Louis (St. Louis, MO) 0.230 683
Mellon National Bank (Pittsburgh, PA) 0.191 582
Commerce Trust Company (Kansas City, MO) 0.161 691

3.1.3 Centrality

The banks with the highest eigenvalue centrality measures in 1929 and 1934 are shown in

Table 1. In 1929, Continental Illinois Bank and Trust (Chicago) had the most linkages in the

network, with 4,474 in 1929. Chicago experienced two pronounced banking panics in 1931–

32, and Continental Illinois lost several thousand of its respondents to failure (Friedman and

Schwartz, 1963; Calomiris and Mason, 1997), and thus slipped from being the bank with the

highest degree centrality in 1929 to second overall in 1934. Chase National Bank gained a few

hundred connections and moved from second to first overall, in both degree and eigenvalue

centrality. In examining the eigenvector centrality scores, it is clear that the centrality of the

top banks increased from 1929 to 1934. Both before and after the banking distress, six of the

top 10 banks with the highest degree centrality are located in the financial centers of New
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Table 2: Top ten banks by betweenness centrality.

1929: Bank Name and Location 1934: Bank Name and Location

1. First National Bank of Chicago (Chicago, IL) 1. First National Bank of Chicago (Chicago, IL)
2. Security First National Bank of Los Angeles
(Los Angeles, CA)

2. Security First National Bank of Los Angeles
(Los Angeles, CA)

3. Union Trust Company (Cleveland, OH) 3. First National Bank in St. Louis (St. Louis,
MO)

4. American Trust Company (San Francisco, CA) 4. The Pennsylvania Company (Philadelphia,
PA)

5. Citizens National Trust & Savings Bank (Los
Angeles, CA)

5. Republic National Bank and Trust (Dallas,
TX)

6. Mississippi Valley Merchants State Trust Com-
pany (St. Louis, MO)

6. Mellon National Bank (Pittsburgh, PA)

7. Mercantile Commerce Bank and Trust Com-
pany (St. Louis, MO)

7. Mercantile Commerce Bank and Trust Com-
pany (St. Louis, MO)

8. Fifth Third Union Trust Company (Cincin-
nati, OH)

8. The Boatmen’s National Bank (St. Louis,
MO)

9. Mellon National Bank (Pittsburgh, PA) 9. Harris Trust and Savings Bank (Chicago, IL)
10. The Philadelphia National Bank (Philadel-
phia, PA)

10. City National Bank and Trust Company
(Chicago, IL)

York City and Chicago. These two cities were known as central reserve cities since banks

that were not members of the Federal Reserve System could satisfy their state-mandated

reserve requirements by holding reserves in banks located in these cities. The other four

on the list are in reserve cities of the Federal Reserve System. As discussed in the next

subsection, reserve and central reserve cities gave rise to a correspondent network with a

pyramid-like structure.

Interestingly, but consistent with the example from Section 3.1.1, the results differ when

considering betweenness centrality. Only one of the top 10 banks using this measure is

located in the central reserve cities of New York and Chicago (versus the majority of banks

for the two other measures). As Table 2 shows, for betweenness centrality, the most influential

connector nodes are coast-to-coast and geographically dispersed. Further, using this measure,

there is far less stability in the top 10, with only four banks from 1929 appearing in 1934

(new entrants are shown in italics in Table 2). The greater degree of temporal change in

betweenness centrality, relative to the other centrality measures, likely reflects the fact that

the banking crisis was widespread. That is, even in 1929, many of the most influential banks

were located outside of the central reserve cities.
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3.2 The Pyramid Structure of the Banking Network

Financial historians provide us with some priors about the general topology of the networks

in 1929 and 1934 – features that evolved out of correspondent banking. Their descriptions

point toward a network topology resembling a pyramid, where banks in cities, such as New

York and Chicago, had the greatest number of connections; those in other large cities, such

as St. Louis, Philadelphia, and San Francisco, had fewer linkages; and banks in small towns

and cities had the least. In this section, we explore the extent to which their priors are

confirmed by the data, an aspect not previously examined by researchers, and examine the

degree to which the topology of the network predisposes the system to risk.

The structure of the correspondent banking network that existed on the eve of the De-

pression had evolved over the course of the nineteenth century, especially after the Civil War

and the establishment of nationally chartered banks. As the nation grew and population

moved westward, banks located in smaller towns and cities sought correspondent linkages

with financial centers to carry out business on behalf of their customers as well as on their

own account. Further, the National Banking Act of 1864 led to increased circulation of bank

drafts as a national payments instrument (James and Weiman, 2010). It had the effect of

solidifying the importance of New York correspondent banks at the apex of an emerging

pyramid-shaped correspondent network as these centrally-located banks could mediate pay-

ments of bank drafts between parties regardless of their location (Redenius, 2007; James and

Weiman, 2011).

The national banking acts of the 1860s further required “country banks” (those located

in the hinterlands) with national bank charters to meet legal reserve requirements by keep-

ing a portion of their reserves as cash in their vaults and the remainder (originally up to

three-fifths) in correspondent banks in reserve or central reserve cities (larger cities dispersed

throughout the country). State laws (applying to those banks that received charters to op-

erate from state banking authorities) reinforced the need for correspondent relationships by

also requiring state-chartered banks to split their reserves between vault cash and interbank

balances kept in the larger city banks. Thus, as a result of the growth of a national pay-

ments system and regulations, interbank deposits were particularly concentrated in reserve
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and central reserve cities, and fostered a pyramid-like structure in terms of correspondent

relationships.9

The Federal Reserve Act altered the structure of reserves, with framers imagining a

system whereby banking panics (not uncommon in the late 19th century) would be reduced

by consolidating deposits in one of the Fed’s 12 regional reserve banks instead of being

scattered among hundreds of commercial banks in scores of reserve cities.10 By 1929, however,

only 10% of state-chartered commercial banks had joined the Federal Reserve System. Most

small and medium-sized banks in the financial system did not join and satisfied their reserve

requirements by keeping them in Fed-member banks.11 Interbank deposits thus constituted

a significant share of Fed-member bank deposits: for every dollar of demand deposits, Fed

member banks held $0.25 of interbank deposits.12

The fact that substantial amounts of highly liquid interbank deposits were held in other

banks has important implications for the correspondent network’s role during banking crises.

In the 19th century, withdrawals from non-central reserve city banks happened regularly, and

if they were sufficiently large, they could put pressure on call loan rates to rise and stock

9This reserve pyramid proved ineffective during large financial crises of the nineteenth century, when
reserves became difficult, and at times impossible, to access. When faced with widespread demands for
cash and credit, reserve city banks hoarded funds for their own defense and left country banks to fend for
themselves. As a result, banking panics periodically shut down the payments system (Kemmerer, 1922;
Sprague, 1910). The pyramid structure was thus more effective at satisfying needs arising around the
payments system than it was at providing liquidity to distressed institutions.

10For a detailed analysis of the interbank network and 19th century crises, see Calomiris and Carlson
(2017). For additional research on how the founding of the Federal Reserve influenced the interbank market,
see Carlson and Wheelock (2016), Carlson and Wheelock (2018), and Jaremski and Wheelock (2019).

11In June 1929, member banks held 93% of all interbank deposits in the United States. Nonmember banks
held only 7%. In New York, for example, the 15 banks with largest number of correspondent-respondent
relationships belonged to the Federal Reserve. This group included nine national banks (Chase, Chatham-
Phenix, Chemical, City, Commerce, First, Hanover, Park, and Seaboard), and six state member bank and
trust companies (Bankers, Chemical, Guaranty, Irvine, Manhattan, and New York). In Chicago, the banks
doing a substantial correspondent banking business either belonged to the Federal Reserve, were owned
by a national bank that belonged to the Federal Reserve (e.g., all of the stock of First Union Trust and
Savings was owned by First National Bank of Chicago), or were combined with a national bank in a holding
company or similar corporate structure (e.g., Continental Illinois was a holding company that controlled the
Continental National Bank and the Illinois Merchant and Trust Company).

12The 8,707 member banks held $35.9 billion in total deposits, $18.7 billion in demand deposits, and
$3.7 billion in interbank deposits. Interbank deposits exceeded 60% of aggregate reserves. Federal Reserve
member banks also deposited excess reserves at correspondent banks in reserve and central reserve cities,
since commercial correspondent accounts paid a higher interest rate (typically 2%) than Federal Reserve
Banks (typically 0%). This was particularly true of reserve-city banks, which deposited their excess reserves
in money-center banks in New York and Chicago.
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prices to fall, triggering panic selling of assets and inducing a financial panic that could reach

well beyond New York City.13 Indeed, all of the major panics of that era were marked by

withdrawals of funds by the country and reserve-city banks from New York City (Bordo and

Wheelock, 2011). Even though the national banking system’s reserve requirements created

a large potential pool of reserves that could be used at the time of such a crisis, there

was no central coordinating mechanism to deploy them. Rather, individual banks, wary of

being run, tended to hoard them and feared paying penalties if they fell below the legal

requirement. As a consequence, the national banking system’s reserves, though large in

aggregate, were effectively unavailable for meeting the demands of panicked depositors in

crisis periods (Beckhart, 1922).

The introduction of the Federal Reserve System was meant to replace this fragile sys-

tem, but it depended on banks joining the system and a willingness by Fed policymakers to

deploy reserves to troubled banks in times of need.14 During the early 1930s, when many

banks frequently faced significant time and demand deposit withdrawals, they would turn

to their most liquid assets to satisfy depositors’ claims. The two most liquid assets most

banks held were vault cash and interbank deposits. When just a few banks faced distress,

the correspondent network could efficiently transfer funds from the center to places where

banks were being run and satisfy the increase in demand for liquid funds. But, the system

could become overwhelmed if say, during a panic, the demand for liquidity surged. Dur-

ing such panics positionally-important banks (e.g., reserve and central-reserve city banks)

could face withdrawals from multiple respondents simultaneously. Network position and the

correspondent banking network were thus critically linked during the 1930s, when banking

panics featured prominently (Friedman and Schwartz, 1963; Wicker, 1996; Jalil, 2015). To a

large degree, then, the pyramid-shaped network topology was a relic of the national banking

era (when regulations allowing reserve requirements to be met by holding them in larger-

city banks were first imposed, and the subsequent failure of the Federal Reserve System to

13The standard story for explaining why country banks and reserve city banks withdrew their interbank
deposits in this era was due to the seasonal demand for money arising from planting and harvest cycles (See
Calomiris and Gorton (1991)). The creation of an elastic currency that could meet the needs of agriculture
was a key principal behind the Feds founding.

14As Friedman and Schwartz (1963)famously argue, the Fed failed to adequately provide liquidity and, as
noted above, most banks were outside the Federal Reserve System as of 1929.
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convince all state-chartered banks to switch their charters and join the system after 1914.

Though the broad contours of the correspondent network’s topology are well documented, its

contribution to systemic risk just prior to the Depression has not been previously analyzed.

To examine the properties of this network topology, and in particular how they relate

to systemic risk, we compare the diameter and fragility of the pyramid networks to (i) a

random graph network and to (ii) a bootstrapped scale-free network with approximately the

same number of nodes and mean degree.15 “Diameter” is defined as the maximal shortest

path between any pair of nodes in the cluster for a non-directional network. It is the max-

min measure over all paths between all pairs of nodes. In essence, it measures how many

banks it takes for a financial flow to spread from one edge of the network to the other, thus

giving us some insight into how quickly “contagion” could occur.16 The bigger the diameter,

the less likely it is that a local financial shock will become a global event in a banking

system. We define the concept of “system fragility” as the Herfindahl index normalized by

dividing by mean degree: F = E(d2)/E(d), where d is degree of each node. Fragility takes

concentration more explicitly into consideration than diameter because a highly-concentrated

network tends to have a greater risk of transmission. Hence, if a highly centralized node is

compromised, the propensity for risk to spread to the other nodes is high.

We begin with an example that illustrates the differences between a pyramid structure,

a random graph, and a scale-free graph. Pyramid graphs are mostly tree-like even though

they are not directed acyclic graphs (or DAGs). Topologically, pyramid graphs are scale-free

and are likely to have degree (connections) concentrated in a few nodes; they are within

the class of scale-free networks (Lasszlo-Barabasi and Albert, 1999; Barabasi and Bonabeau,

2003; Barabasi, 2002). Recall that the 1929 network contains 25,684 nodes and has a mean

degree of 5.5. This pyramid network in 1929 has a diameter of 13 and fragility of 453.

For comparison, we generated a random network with the same number of nodes and mean

degree.17 The random network specified in this manner has a diameter of 12 and a fragility

15A scale-free graph is one where the degree distribution is not Gaussian as in a random graph, but follows
a power-law distribution; see Lasszlo-Barabasi and Albert (1999).

16Counterparty contagion is the specific form of contagion we are referring to here, as opposed to other
forms, such as confidence effects.

17We generated several random networks and the results align with the presented case.
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of only 6.5. However, the more apt comparison is versus a bootstrapped scale-free network

(rather than a random network) with the same mean degree and number of nodes. The

bootstrapped scale-free network has a diameter of 14 and a fragility of 180, much higher

than that of a random graph, but still much lower than the pyramid network, suggesting

that risk was even more concentrated than we would expect in a scale-free setting.

The results are similar when we examine these measures after the banking crisis of the

early 1930s. The network was reduced to 16,446 nodes, with a mean degree of 5.0. The

diameter in 1934 is 13 and fragility is 354. A random network with the same number of

nodes and same degree has a diameter of 12 and a fragility of 6.0. The bootstrapped scale-

free network with these parameters has a diameter of 14 and a fragility of 149.

To shed light on how crises change financial systems, we can also compare how the

diameter and fragility of the network changed with respect to the recent Global Financial

Crisis (GFC). Between 1929 and 1934, the diameter remained the same at 13. The average

shortest path length in 1934 was 3.25, similar to the 3.31 of 1929. Between 2005 and 2009, the

diameter also remained quite stable, decreasing from 5 to 4 as the network shrank because

of bank exits (see Burdick et al. (2011)). Therefore, the network was much wider in 1929

and 1934 compared to the recent financial crisis in the US. Between 1929 and 1934, fragility

fell by roughly one-fifth, from 453 to 354, suggesting that the system displayed much more

concentrated risk before the banking distress of the early 1930s. These numbers are much

higher than in 2005 when fragility was 138 (see Burdick et al. (2011)). Fragility rose to

172 in 2006, and then dropped to 35 by 2009. System fragility during the GFC was thus

considerably smaller than in the Great Depression, although some of this difference may be

attributable to the fact that 2005-2009 calculations are based on a small sample of financial

institutions.18

18Comparing the Great Depression with the GFC is not precise by any means. The construction of
networks in both periods uses quite different variables and there are differences also in the measure of bank
credit quality, as different credit risk variables were developed and employed in modern times. Therefore,
these comparisons should not be taken literally, but more as indicative of how financial crises change the
structure of the banking system.
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4 Quantifying Systemic Risk

4.1 Deriving Composite Risk Scores

We now turn to measuring systemic risk and develop empirical measures of both individual

bank credit risk (R) as well as aggregate system-wide risk (S) that incorporate the intercon-

nectedness of banks. In order to construct a measure of systemic risk rather than “systemic

importance” (defined on only size and/or connectedness), it is necessary to quantify the

credit quality of all commercial banks. Since credit ratings were non-existent for the tens of

thousands of banks that were too small to be listed on the NYSE or regional exchanges, we

employ financial ratios on a best-efforts basis with limited data to develop a composite mea-

sure of credit risk, a product of inverse profitability and transformed leverage. We combine

this with the network matrix to create a measure of systemic risk per bank.

We begin with bank-level balance sheet and income data to derive bank-specific measures

of risk and define and/or compute the following financial ratios:

1. Assets – the sum of loans and discounts, miscellaneous assets, bonds and securities,

and cash and exchanges (due from banks);

2. Equity – the sum of paid-up capital plus surplus and profits;

3. Leverage – assets divided by equity;

4. Buffer stock of retained earnings (BUF) – stock of retained earnings (surplus and profits

divided by equity).19

We convert profitability into a risk score (C) using the following function of BUF, i.e.,

an inverse profitability risk score:

C = a+
1

1 +BUF
· b. (6)

19This is close to a bank’s return on equity, however, because we do not observe dividends paid out, it is
not identical to it. It was nevertheless used by banks to expand operations or write off losses relative to the
book value of net worth. See Carlson and Rose (2015). One might argue that retained earnings and equity
are the same, but in a system of book value accounting, retained earnings are a good proxy for profitability.
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So that C is bounded between 1 and 10, we set a = −8 and b = 18 because BUF ∈ (0, 1).

An increasing score implies greater risk. For the banks where the BUF data was missing

we set these banks C values to the means of all banks. This does not change the first four

moments of the distribution of C in any way. The mean credit risk score in 1929 is 5.02

(median 4.90), with a standard deviation of 1.92. Table 3 displays the credit risk scores

and leverage ratios for the 10 largest banks in 1929 and 1934 (as measured by equity).20

Interestingly, especially in comparison to the GFC, all of the largest banks have risk scores

below the mean in 1929. Additionally, the most connected banks in Table 1 have below

average credit risk scores. Prior to the Depression, much of the balance-sheet risk within

system thus resided in medium to smaller sized banks as evidenced by the average C for

equity quintiles, which (from smallest to largest equity) are 6.27, 5.52, 5.09, 4.45, and 3.67,

respectively. The risk measures for 1934 changed as a result of the crisis. The mean credit

risk score rose from 5.02 in 1929 to 5.65 (with an SD of 2.05) in 1934. In 1929, whereas

all of the largest banks had risk scores below the mean, this changed after the early 1930s:

both National City Bank of New York and Continental Illinois exceeded the mean of 5.65 in

1934.21

We transform our leverage ratio in Table 3 to deal with an artificial right skew arising

from positive outliers in the data, which are banks with very low equity. Leverage-based risk

(L) is thus calculated as the following transformed value:

L = ln(1 + Assets/Equity). (7)

We add 1 to the untransformed leverage in the equation above to handle cases where asset

data are missing. For these banks, we set the value of L to the sample mean (less than 3%

of the sample). This does not change the first four moments of the distribution of L in any

20In the table, Bank of America Nat. Tr. & Sav. Assn. (San Francisco, CA) in 1934 is related to Bank
of Italy Nat. Tr. & Sav. Assn. (San Francisco, CA) in 1929. A.P. Giannini’s original bank was the Bank
of Italy, founded in 1904. In the 1920s, he established other institutions, which were later consolidated into
Bank of America, part of the Transamerica holding company.

21As a caveat, we note that higher profitability may not necessarily mean lower risk as lucky banks that
take more risk might be more profitable, as noted in Meiselman et al. (2018), who argue that it is possible
that higher profits accrue to banks with higher beta. However, in crisis periods, this is unlikely. Another
caveat is that higher leverage banks may just have better quality assets. However, for 1929 and 1934, the
correlation between leverage and ROA (surplus profits divided by assets) is negative. If we treat surplus as
a measure of how good the assets are, this suggests the opposite conclusion.
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Table 3: Credit Risk and Leverage for the 10 largest banks (as measured by equity).

1929: Bank and Location Credit Risk Leverage

National City Bank (New York City, NY) 3.750 8.783
Guaranty Trust Company (New York City, NY) 3.086 8.366
Chase National Bank (New York City, NY) 3.443 7.811
Continental Illinois Bank and Trust (Chicago, IL) 4.242 7.660
Irving Trust company (New York City, NY) 3.115 5.655
Bank of Italy Nat. Tr. & Sav. Assn. (San Francisco, CA) 3.769 8.016
First National Bank (New York City, NY) 1.447 5.208
Bankers Trust Co. (New York City, NY) 2.221 6.686
Central Hanover Bank & Trust Co. (New York City, NY) 2.054 6.031
Manufacturers Trust Co. (New York City, NY) 2.757 5.851
Top 10 mean 2.988 7.006
Population mean 5.020 7.976

1934: Bank and Location Credit Risk Leverage

Guaranty Trust Company (New York City, NY) 3.124 5.354
Chase National Bank (New York City, NY) 5.225 7.717
National City Bank (New York City, NY) 6.167 8.354
Irving Trust Company (New York City, NY) 3.468 5.141
Bankers Trust Company (New York City, NY) 2.432 8.496
Continental Illinois Bank and Trust (Chicago, IL) 7.285 8.086
First National Bank (New York City, NY) 1.457 5.068
Bank of America Nat. Tr. & Sav. Assn. (San Francisco, CA) 3.994 10.207
Central Hanover Bank and Trust (New York City, NY) 2.445 8.282
Manufacturers Trust Company (New York City, NY) 5.158 6.147
Top 10 mean 4.075 7.284
Population mean 5.651 6.421

material way.22 Finally, we compute a composite risk score, R, which combines the inverse

of profitability measure, C, and transformed leverage, L, such that:

R = C × L. (8)

In the ensuing analysis of systemic risk, we focus on R since this metric has appealing

properties. For example, because it is possible for firms with a high BUF to have low equity

(and consequently high leverage), these firms would be quite risky, yet the measure C would

22Appendix A.1 shows the improved performance of transformed leverage relative to untransformed lever-
age.
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not assign them as such. Multiplying C by L compensates for this possibility. In 1929, R

has a mean value of 10.54 and a standard deviation of 4.27. By 1934, the banking crises had

raised the average riskiness of banks to 10.76 (with a SD of 4.29).

The risk measure, R, is analogous to modern credit-scoring methods such as the prob-

ability of default which, for example, is computed using the Merton (1974) model.23 This

model defines the distance to default (an input to computing probability of default) as a

leverage-adjusted measure of volatility, providing the connection to our risk model here,

where R is a leverage-adjusted measure of inverse profitability. We use R since there are no

measures of asset volatility available for all banks in 1929 and 1934. In Appendix A.1, we

compare R to several other ratios and measures of risk. We show that R outperforms the

other measures at predicting default, and thus present systemic risk measurement results in

the following sections employing R.

4.2 Systemic Risk Per Bank

Plugging the values from the 1929 data into equation 5, we find that the total systemic

risk per bank, S, is 0.104. By itself, the value carries little meaning, but since it can

computed at different points in time, the metric allows us to examine how overall risk in

the system changes as a result of the banking crises of the Great Depression. By 1934, total

systemic risk per bank rose to 0.138. We thus find that the financial panics of the early

1930s increased systemic risk per bank by 33% – a dramatic change in a span of only 4.5

years. We also undertook a bootstrap analysis to determine if the increase in S from 1929 to

1934 is statistically significant. Bank failures resulted in a large reduction in the number of

banks in the sample from 25,644 in 1929 to 16,446 in 1934, i.e., a reduction of 9,238 banks.

We simulated random removals of this number of banks from the 1929 network in order to

examine how much the S score changes. This experiment was repeated 1,000 times, and we

kept track of the difference in S score when banks were removed from the network versus the

original score of 0.104. As expected, the mean difference is zero, with a standard deviation

23If we ignored the log specification in equation (7), i.e., L = Assets/Equity, then R would be equivalent
to Assets

Equity+RetainedEarnings , which is a profitability-adjusted measure of leverage, akin to the Merton metric,
which is a risk-adjusted measure of leverage.

28



of 0.004. Hence, the increase in S score from 0.104 in 1929 to 0.138 in 1934 is statistically

significant, suggesting that large financial crises can dramatically influence systemic risk.

The 33% increase can be explained by the two components of our systemic risk measure.

On average, balance-sheet risk (measured by R) increased between 1929 and 1934. From

Table 3, we can see that credit risk for the largest banks increased nearly 3 times more

than the average increase. While average connectivity (measured by mean degree) fell,

the connectedness of the top banks increased (as seen from the eigenvalue centrality scores

in Table 1). Therefore, our results suggest that connectivity and balance sheet risk are

concentrating at the top of the pyramid network. To understand exactly where risk emanated

from before and after the banking distress of the Great Depression, we can decompose our

systemic risk measure into the risk contribution of each bank. This decomposition of the

scalar function S(R,A) is possible because the function is linear homogeneous in vector

Q = [Q1, Q2, ..., Qn]>, the normalized value of R. We can apply Euler’s homogenous function

theorem and obtain the risk decomposition equation:

S =
∂S

∂Q1

·Q1 +
∂S

∂Q2

·Q2 + . . .+
∂S

∂Qn

·Qn. (9)

Each partial derivative Sj = ∂S
∂Qj

multiplied by Qj is the risk contribution of bank j. We can

calculate all derivatives Sj in closed form using the following vector derivative:

∂S

∂Q
=

1

2S
[A ·Q+ A> ·Q] ∈ Rn (10)

which gives an n-vector of derivatives Sj. Once we know the amount of risk that is con-

tributed by each node, we can pinpoint the riskiest banks in the network in terms of their

contribution to overall systemic risk.

Table 4 shows the percentage of systemic risk contributed by each of the top 20 risk-

contributing banks in 1929 and 1934. Comparing it to Table 1, we can see there is a

considerable correspondence between the banks exhibiting the most systemic risk in 1929

and the banks showing the greatest centrality. However, an important additional feature of

the 1929 network is that systemic risk is dispersed across the entire network. Taken together,

the top 10 banks account for 12.6% of the total systemic risk and the top 20 banks account

for 17.8%. Comparing the 1929 values in Table 4 to those for 1934 reveals that the banking
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Table 4: Top 20 banks by percentage contribution to systemic risk, 1929 and 1934.

1929: Bank Name and Location Percentage Risk

Continental Illinois Bank and Trust (Chicago, IL) 3.23
Chase National Bank (New York City NY) 1.56
National Bank of the Republic of Chicago (Chicago, IL) 1.21
First National Bank of Chicago (Chicago, IL) 1.19
Commerce Trust Company (Kansas City, MO) 1.05
National City Bank (New York City, NY) 1.04
First National Bank (Minneapolis, MN) 0.97
First National Bank in St. Louis (St. Louis, MO) 0.85
Central Hanover Bank & Trust Company (New York City, NY) 0.76
Guaranty Trust Company (New York City, NY) 0.74
First National Bank of St. Paul (St. Paul, MN) 0.63
First Wisconsin National Bank (Milwaukee, WI) 0.62
National Stock Yards National Bank (National Stock Yards, IL) 0.61
National Park Bank (New York City, NY) 0.60
Mercantile Commerce Bank & Trust Company (St. Louis, MO) 0.59
Fletcher American National Bank (Indianapolis, IN) 0.46
Northwestern National Bank (Minneapolis, MN) 0.45
Union Trust Company (Cleveland, OH) 0.45
Fidelity National Bank and Trust Company (Kansas City, MO) 0.42
Drovers National Bank (Chicago, IL) 0.41

1934: Bank Name and Location Percentage Risk

Continental Illinois Bank and Trust, (Chicago, IL) 4.21
Chase National Bank (New York City, NY) 3.68
First National Bank of Chicago (Chicago, IL) 2.16
National City Bank (New York City, NY) 1.60
Commerce Trust Company (Kansas City, MO) 1.22
First National Bank in St. Louis (St. Louis, MO) 1.06
Northwestern National Bank and Trust (Minneapolis, MN) 0.97
Central Hanover Bank & Trust Company (New York City, NY) 0.91
First National Bank and Trust Co. (Minneapolis, MN) 0.76
First Wisconsin National Bank (Milwaukee, WI) 0.74
Mercantile Commerce Bank & Trust Company (St. Louis, MO) 0.71
Omaha National Bank (Omaha, NE) 0.63
National Stock Yards National Bank (National Stock Yards, IL) 0.63
Guaranty Trust Company (New York City, NY) 0.55
First National Bank of St. Paul (Minneapolis, MN) 0.51
Fifth Third Union Trust Co. (Cincinnati, OH) 0.51
Philadelphia National Bank (Philadelphia, PA) 0.49
City National Bank and Trust Co. (Chicago, IL) 0.49
First National Bank (Kansas City, MO) 0.46
First National Bank (Boston, MA) 0.45
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crises of the early 1930s caused the concentration of risk in the network to rise for the top

banks. In 1934, the 10 systemically riskiest banks contributed 17% to overall risk, while the

top 20 contributed 23% of the overall systemic risk. Additionally, while Continental Illinois

lost thousands of connections (Table 1), its balance sheet risk increased enough so that it

remained the system’s riskiest bank in 1934. These findings are important from a modern

regulator’s perspective since the network topology, number of failures, and location of the

failures are unlike the GFC. From Section 3.1.1, we can see that the change in S due to exits

in the network depends on the network position and credit risk of exiting banks. Since most

of the network exits during the Great Depression were less positionally-important banks, we

provide an additional perspective on how systemic risk changes due to a massive financial

crisis.

As a robustness check, we also recomputed the risk score in equation (8) using size weights

based on bank assets. That is, we redefined R = C×L×w, where w is an asset-based weight,

such that if the bank was in the top size decile by assets, then w = 3, and if it was between

the 40th and 90th percentile, it was given a weight of w = 2. All banks below the 40th size

percentile had weight w = 1. We recomputed the results in Table 4 and noticed no material

changes. Therefore, the systemic risk measure is robust to size-weighting of individual bank

risk.

4.3 Realized Bank Suspensions

For the most part, banks identified as the systemically riskiest prior to the start of the

banking crises of the 1930s did not fail. Only one of the top 20 systemically risky banks in

1929 (Table 4), Union Trust Company (Cleveland, OH), failed. Four others experienced sus-

pended payments and subsequently experienced “distressed” mergers: National Park Bank

(NYC), National Bank of the Republic of Chicago, Fidelity National Bank and Trust Com-

pany (Kansas City), and Fletcher American National Bank (Indianapolis). The survival of

most of the 20 ex ante systemically riskiest banks was buttressed by the fact that, on aver-

age, these banks had lower than average composite risk, R, in 1929. While they were central

to the network, and thus “systemically important,” their better financial position and lower
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credit risk prior to the crisis allowed them to bend, but not break. Appendix Figure A.2.1

shows that most of the banks that exited the network between 1929 and 1934 were smaller

than the median-sized bank, as measured by total assets.

Additionally, there was a large-scale bank rescue program that was implemented after the

banking crises of the Great Depression had begun to ravage the country’s financial system.

The Reconstruction Finance Corporation (RFC) was established in early 1932. It initially

offered collateralized loans to banks in need of assistance and later was given the authority to

recapitalize them through preferred stock purchases. An interesting point is that about 70%

of the 1929 top 20 risk contributors received a large capital injection from the RFC. This

suggests that regulators, even then, implicitly understood the nature of risk in networked

financial systems.

Thus far, we have highlighted the risk contributions of the systemically riskiest banks

before and after the crisis. However, our empirical design also allows us to examine how

actual commercial bank suspensions occurring during the period of the banking panics (1930-

33) altered systemic risk. We focus on the 30 largest realized suspensions, as measured

by total loans and investments.24 These include some of the most notorious banks failures

during the Depression, such as the Bank of the United States, First National Bank of Detroit,

Guardian National Bank of Commerce, and the two largest banks from the Caldwell chain

of banks (National Bank of Kentucky and Central Bank and Trust Company).25 These 30

suspensions accounted for a total of $1.8 billion or 25% of the nation’s loans and investments

in suspended commercial banks.

To compute how the failure of these banks altered systemic risk, we set the risk score

R for these banks to the maximum value, recompute S, and look at the percent change in

S. Risk in the system should then rise through each bank’s relationships to other banks in

the adjacency matrix. The top 10 suspensions by total assets and their percent change in

systemic risk are shown in Table 5. Although the Great Depression wiped out an inordinate

number of banks, systemic risk arising from the realized suspensions of the 30 largest banks

24Board of Governors (1936) (Table 18, p.36) provides data on the largest bank suspensions between 1929-
33. The mean size of bank failures for 1930-33 falls from $954,000 to $714,000 if these 30 banks are excluded.
(Board of Governors (1936), p.34).

25See Heitfield et al. (2017) for an analysis of the banks that did business with Caldwell and Company.
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Table 5: Top 10 banks (by total assets) that suspended after 1929 and their contribution to
systemic risk.

Bank Names Loans (1000s) % Change in S

Union Trust Company (Cleveland, OH) 189,563 1.586
The Bank of United States (New York City, NY) 213,403 0.028
First National Bank in Detroit (MI) 379,788 0.938
Guardian Trust Company (Cleveland, OH) 122,038 0.259
Guardian National Bank of Commerce (Detroit, MI) 109,856 0.438
Baltimore Trust Company (Baltimore, MD) 57,832 0.112
Ohio Savings Bank & Trust Co. (Toledo, OH) 44,261 0.155
The Bank of Pittsburgh N. A. (Pittsburgh, PA) 58,426 0.667
Hibernia Bank & Trust Co. (New Orleans, LA) 47,535 0.477
National Bank of Kentucky (Louisville, KY) 37,721 0.651

only increased by 8.33%. However, their composite risk score was well-above the average for

their large size in 1929 and many of them were not members of the Federal Reserve System,

which is fairly unusual for banks with their high degree. Foreshadowing, our econometric

analysis in Section 5 suggests that banks with these characteristics in 1929 were more likely

to subsequently fail by 1934.

4.4 Counterfactuals

An important question from a regulator’s perspective is how overall systemic risk changes if

something happens to one of the systemically riskiest banks. Our model allows us to consider

the effects of counterfactuals that affect systemic risk. We consider two: (1) when banks are

removed from the system (perhaps through supervisory action) and (2) when banks fail. We

begin by noting that the risk contributions, such as those shown in Table 4, have a useful

mathematical property. They approximate the percentage reduction in per bank systemic

risk that occurs when any bank exits the system for some reason other than failure, e.g.,

ownership decides to voluntarily liquidate. Therefore, when a bank exits, system-wide risk

falls by approximately the same amount that the bank contributes to overall systemic risk.

Given this insight, it follows that our analytic solution also permits direct measurement

of the percentage reduction in systemic risk achieved if a bank were “quarantined.” In this
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counterfactual, a bank is quarantined if it remains in the network, but is not allowed to fail.26

Such a situation could arise if a regulatory authority chooses to intervene during a crisis,

perhaps if a bank is viewed as systemically important or “too big to fail.” We can simulate

this by setting the risk score, R, for the bank equal to zero (i.e., the government backstop),

leaving it in the network, and then recalculating S. To illustrate, consider Continental Illinois

– the systemically riskiest bank by our methodology. If this bank is quarantined, risk falls

by 3.2%. Likewise, in 1934, if Continental Illinois were quarantined, systemic risk would

fall by 4.21%. Even when a collection of banks is quarantined, the same result is realized.

For example, if we allow the 10 riskiest banks in 1929 to be quarantined, the reduction in

systemic risk is 13.5%.

A second counterfactual of interest considers how the hypothetical failure of an ex ante

systemically important bank affects overall systemic risk. We can simulate the failure of

the 10 systemically riskiest banks by setting their risk score, R, equal to the maximum risk

score across all banks in 1929. Appendix Table A.3.1 displays the results of this simulation.

Systemic risk changes drastically if the riskiest bank, Continental Illinois Bank and Trust,

fails: overall systemic risk S increases by approximately 13%. Chase National’s bankruptcy

would lead to over an 8% increase in S. The simultaneous failure of all 10 of the top

contributors would raise systemic risk by over 50%, even without considering dynamic risk

to the network (how failures change other banks’ risk in the A matrix).

5 Network Features and Bank Survivorship

5.1 Predicting Bank Survivorship for the Entire Network

Because our underlying analysis is based on bank-level data, we can also analyze whether

systemic risk measures improve model fit of subsequent banking distress. In this section,

we use the sample of all banks operating in 1929 to predict bank survivorship in 1934. The

outcome variable, yi, thus equals 1 if bank i survives and appears in 1934 and equals 0

26RFC assistance is not the same as the bank being “quarantined.” Many banks failed despite receiving
RFC assistance.
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otherwise.27 62% of the sample survives and the remainder exits. In this section, we do not

differentiate between failures and mergers; however, in Appendix Section A.5, we disentangle

failures and mergers.

We consider two probit models, where in latent-variable form:

M1 : y∗i = x>i1 · β1 + εi (11)

and

M2 : y∗i = x>i1 · β1 + x>i2 · β2 + εi. (12)

For both, the mapping from the latent to the observed data is yi = 1{y∗i > 0} and

εi ∼ N(0, 1). The covariates in the vector xi1 include a rich set of controls, including

balance sheet data on bank i, its location, and information on local bank competition. We

include additional county and state-level controls capturing differences in economic structure

and financial regulation, much of which varied at the state level (Mitchener, 2005, 2007).

Because we are interested in modeling the entire banking network and capturing the failures

that occurred between 1929 and 1934, the majority of which were non-Fed member banks,

we use the bank-specific data from Rand McNally as they are included in that publication.28

These controls were selected following Calomiris and Mason (2003). Table 6 provides de-

tailed descriptions of our control variables, which include measures for the size of the balance

sheet, balance sheet ratios, the number of banks in the county, the share of deposits held at

that bank as a ratio of total deposits in the county, Federal Reserve membership, indicators

for whether the bank is located in a reserve city or central reserve city, county population,

manufacturing establishments and acreage of cropland in the county, and Federal Reserve

district indicators. Lastly, motivated by work showing the differences in bank outcomes in

areas with and without branch banking, we include a measure for the intensity of branching

in the bank’s location (Carlson, 2004; Mitchener, 2005; Carlson and Mitchener, 2006). Fol-

27Banks are matched between 1929 and 1934 based on their name, location, and routing number. Routing
numbers are a useful matching tool for banks that have gone through name changes or charter changes.

28More detailed balance sheet information is available for the subset of Federal Reserve member banks,
however, there is a clear tradeoff when it comes to modeling systemic risk: 73% of the exits from the system
were nonmembers. The results for the entire commercial banking system seem more relevant since our goal
is to test whether systemic risk measures improve model fit rather than, for example, trying to present causal
estimates of bank failures. For a review of national banks, see Calomiris et al. (2019).
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lowing Carlson and Mitchener (2006), the branching intensity variable is the share of banks

operating branches in the state.

Table 6: Definitions of the variables that enter specifications M1 and M2.

Model Variable Definition

M1, M2 Loans/Deposits Ratio of loans and discounts to deposits
M1, M2 Bonds/Assets Ratio of bonds and securities to total assets
M1, M2 LnAssets Ln(Total Assets)

M2 EigenCent Eigenvalue Centrality, C
M2 Composite Risk Composite Risk Score, R
M2 SysRisk Percent Percent contribution to systemic risk (S)

M1, M2 Fed Member Indicator for Federal Reserve membership
M1, M2 Central Reserve City Indicator for central reserve city location
M1, M2 Reserve City Indicator for reserve city location
M1, M2 LnPopulation Ln(County Population)
M1, M2 Manufact per capita Manufacturing establishments in the county

divided by county population†

M1, M2 Cropland per capita Acreage of cropland in the county divided
by county population

M1, M2 Branch Intensity Ratio of number of banks operating branches in
the state to total number of banks in the state

M1, M2 Num Banks in County Number of banks operating in the county†

M1, M2 Deposits/County Deposits Ratio of deposits held at the bank to the sum
of all bank deposits in the county

M2 Fed Mem × SysRisk Percent Interaction between Federal Reserve membership
and percent contribution to systemic risk

M2 Branch × EigenCent Interaction between Branch Intensity and
Eigenvalue Centrality†

Note: County population, manufacturing establishments, and acres of cropland are from the 1930 U.S.
Census of Population, Manufacturing, and Agriculture. †Manufact per capita is multiplied by 100 and
Branch × EigenCent is multiplied by 10 to rescale for numerical precision. Num of Banks in County is
divided by 10.

Our main variables of interest, measures for systemic risk for bank i in 1929, are in the

vector xi2, namely, composite risk score (R), eigenvalue centrality, and percent contribution

to systemic risk. Additionally, we include two interaction terms that allow us to investigate

how the institutional structure of the Federal Reserve System and the legalities that underlie

branching systems modify the correspondent network’s impact on bank survival. First, we

interact Federal Reserve membership with the percent contribution to systemic risk since the
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experience of Federal Reserve member banks differed from nonmembers. They had access

to discount lending facilities and the average sizes of their assets, connections, and market

shares were much larger than nonmembers.29 Second, we interact branching intensity with

eigenvalue centrality. The tension that existed in the late 1920s between the correspondent

network and branch banking is well-documented (Curtis, 1930; Nadler and Bogen, 1933).

Many large correspondent banks took the lead in opposing branch banking as they were

concerned that small banks would join a branching system instead of their correspondent

business (Abrams and Settle, 1993).30 This interaction term this allows us to examine how

the presence of two different types of networks influenced survivability.

5.2 Estimation and Model Comparison

We first conduct a model comparison exercise to understand whether models including

network-based systemic risk measures are useful for predicting subsequent banking distress.

Because few existing studies have bank-level data on the full population of banks, model

testing has received comparatively less attention in the empirical literature on systemic risk,

despite its potential importance. We estimate the models using both maximum likelihood

and Bayesian Markov chain Monte Carlo (MCMC) methods. The estimation results are

similar across both methods; however, the Bayesian results permit us to compute marginal

likelihoods and posterior model probabilities (Greenberg, 2008). Because our primary goal

in this section is to compare models with and without measures for bank-specific systemic

risk, these features of the Bayesian approach allow us to understand how the data support

these measures as predictors of bank survival. For Bayesian estimation, the Accept-Reject

Metropolis-Hastings (ARMH) algorithm is used to fit the model (Tierney, 1994; Chib and

Jeliazkov, 2001). The priors on β are centered at 0 with a standard deviation of 10 and the

results are based on 10,000 MCMC draws with a burn in of 1,000.31

29The reason we selected percent contribution to systemic risk for the interaction is because this measure
captures both the network and the balance sheet – two items that would be included in the Federal Reserve
System’s oversight.

30The reason we selected eigenvalue centrality for the interaction is because this measure only captures
the correspondent network, without balance sheet effects.

31The parameter and marginal likelihood estimates are robust to various hyperparameters on the prior
distributions, as well as using a training sample for the prior.
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Marginal likelihoods (ln f(y|M1) versus ln f(y|M2)) have several advantageous properties.

They lead to finite sample model probabilities, do not require competing models to be nested,

and provide a measure of sequential out-of-sample predictive fit, which makes better use of

the data for model comparison. The latter of these is less well-known. Choudhary et al.

(2017) show that for model Ml:

f(y|Ml) =
n∏
i=1

f
(
yi| {yj}j<i ,Ml

)
(13)

=
n∏
i=1

∫
f
(
yi| {yj}j<i , βl,Ml

)
π
(
βl| {yj}j<i ,Ml

)
dβl. (14)

Equation 13 represents the marginal likelihood as the product of n one-step-ahead sequential

predictive densities, which follows from the law of total probability. Equation 14 then shows

that these n one-step-ahead sequential predictive densities correspond to the cumulative out-

of-sample prediction, where the fit of observation i is measured with respect to the posterior

density, π(β|y), based only on data up to the ith observation (not conditioning on anything

after i, {yj}j≥i). In-sample measures condition on the entire dataset, whereas other out-of-

sample measures typically require the researcher to use a subset of the data for estimation

and the remainder for prediction. Thus, the results depend on which data were used for

estimation. Marginal likelihoods, on the other hand, are invariant to rearranging the data.

Given that we are using ARMH, following Chib and Jeliazkov (2001), we can use the building

blocks of that algorithm to compute marginal likelihoods.

Table 7 presents the marginal likelihood estimates and shows strong evidence in favor

of M2. In particular, the specification has a posterior model probability of nearly 1 in

comparison with M1. Given that M1 and M2 represent competing hypotheses about whether

network measures are important for modeling bank survival, we show the odds in favor of M2

over M1 are high, meaning the data are more likely to occur under M2.
32 The data support

the specification with the additional measures (EigenCent, Composite Risk, SysRisk Percent,

and the two interactions) in predicting the probability of bank survival, as M2 dominates

M1.

While the marginal likelihood is the superior measure for sequential out-of-sample pre-

32The odds in favor of network measures over no network predictors is ≈ 1.07× 10156 : 1. The chi-square
test for confusion matrix differences between M1 and M2 is also highly significant with a p-value of zero.
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Table 7: Model Comparison Results for M1 and M2.

M1 M2

Log-Marginal Likelihood -15345.24 -14985.97
Numerical Standard Error (0.008) (0.020)
Posterior Model Probability 9.35× 10−157 ≈ 1

dictive fit, the in-sample classification rates give us straightforward and intuitive numbers.

With the inclusion of network, composite risk, and interaction variables, outcomes for over

300 additional banks are correctly classified. Overall, these new variables constructed from

bank correspondent networks have significant explanatory power when it comes to specifying

the probability of bank survival during the Depression.

5.3 Bank Survivorship during the Great Depression

Having demonstrated that the data strongly support models including bank-specific systemic

risk measures, we now turn our attention to examining how the different elements of the

network affected bank survivability during the Great Depression. The discussion of the

parameter estimates focuses on M2 since it is a superior model. We begin with a brief

discussion of the coefficients on our control variables, comparing them to results from other

studies on the Great Depression. Table 8 shows that bank size (measured by LnAssets) and

the ratio of Bonds/Assets are positively associated with bank survival. The Loans/Deposits

ratio and the number of banks in the county, a measure of local competition, have a negative

impact on bank survival. The market share of the bank (measured by the share of county

deposits held at that bank) has a positive impact, consistent with Calomiris and Mason

(2003). Lower probabilities of survivorship are associated with the indicator variables for

central reserve city and reserve city. These results align with Mitchener and Richardson

(2019), which finds that, during the banking panics of the early 1930s, banks in reserve

cities and central reserve cities faced significant withdrawal pressure from banks located in

the hinterland.

We now turn our attention to examining the coefficients on network features, systemic

risk, and interaction terms, our novel contribution to the literature on the Great Depression.
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Table 8: Modeling bank survivorship. Posterior means and standard deviations (in parentheses)
are presented for M1 and M2. Maximum likelihood estimates and standard errors are presented in
Appendix Table A.4.1.

M1 M2

Intercept -0.988 (0.175) 0.095 (0.183)
Loans/Deposits -0.023 (0.045) -0.303 (0.048)
Bonds/Assets 1.086 (0.073) 0.731 (0.075)
LnAssets 0.187 (0.009) 0.148 (0.010)
EigenCent 3.041 (1.615)
Composite Risk -0.060 (0.000)
SysRisk Percent -7.138 (2.921)
Fed Member 0.025 (0.019) 0.029 (0.021)
Fed Member × SysRisk Percent 7.995 (2.892)
Branch Intensity 0.740 (0.211) 1.109 (0.241)
Branch Intensity × EigenCent -5.105 (2.161)
Num Banks in County -0.004 (0.004) -0.008 (0.004)
Deposits/County Deposits 0.339 (0.066) 0.393 (0.068)
Central Reserve City -1.078 (0.102) -1.050 (0.103)
Reserve City -0.359 (0.042) -0.317 (0.043)
LnPopulation -0.101 (0.014) -0.088 (0.014)
Manufact per capita 0.480 (0.105) 0.554 (0.105)
Cropland per capita -0.003 (0.000) -0.003 (0.001)
Fed. Dist. FE Yes Yes
n 24,761 24,761

As shown in M2, all of these variables and their interactions are statistically different from 0

(based on a 90% credibility interval). The new measures employed in this paper offer infer-

ential advantages over other systemic risk measures. Importantly, the measures developed

in this paper are constructed from the raw data, as opposed to being the predicted outcome

of a regression. Hence, we do not have additional layers of uncertainty in the model. Other

systemic risk measures, such as CoVAR, are developed from regression output. Thus, using

such measures as covariates in an empirical setting based on micro data such as ours would

lead to generated regressor issues and require standard-error adjustments. Here, we can

simply include these measures as covariates and move forward with interpretation.

Composite risk score is negatively-signed, which is quite intuitive and aligns with results

found in numerous studies on bank survivability. Eigenvalue centrality, measuring the im-
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portance of a bank’s position in the network, is positive whereas a bank’s contribution to

systemic risk is negative. Thus, during the Great Depression, a prominent network posi-

tion raised a bank’s predicted survivability unless the bank also had a risky balance sheet,

in which case it lowered the bank’s probability of surviving the distress of the 1930s. The

positively-signed coefficient on the interaction between Federal Reserve membership and sys-

temic risk contribution sheds additional light on these results: being a Fed-member bank

offsets the negative impact on survivability coming from systemic risk contribution. Further,

the Federal Reserve membership indicator is not statistically different from zero. Hence, as it

pertains to the interbank network, the experience of Federal Reserve members was drastically

different than that of nonmembers.

To understand the magnitude of these differences, we compute the marginal effect of

systemic risk contribution on the probability of bank survival for members and nonmembers.

Following Jeliazkov and Vossmeyer (2018), computation of the covariate effect is done by

marginalizing over the parameters with the posterior distribution and marginalizing over the

sample with the empirical distribution of the covariates:

δSysRisk =
∫ ∂ Pr (yi = 1|x, β)

∂xSysRisk
f (x) π (β|y) dxdβ. (15)

We find that the marginal effect of a Fed member bank’s contribution to systemic risk is

0.272 and the marginal effect of a nonmember bank’s contribution to systemic risk is -2.524.

The distributions of these average effects as a function of parameter uncertainty and units

in the sample are presented in Figure 6.

Thus, on average and all else equal, a marginal increase in systemic risk increases the

probability of survival for Fed-members by 0.27%. On the other hand, a marginal increase

in systemic risk for nonmembers decreases the probability of survival by 2.52%. There

are several possible explanations for these dramatically different outcomes in survivability.

First, Federal Reserve members had access to the Discount Window (DW), and while it is

documented that certain Federal Reserve regional banks could have done more to mitigate

panics (Friedman and Schwartz, 1963; Richardson and Troost, 2009), a sizable amount of

credit was dispersed by the Federal Reserve (Wheelock, 2010) to member banks and perhaps
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Figure 6: Marginal effects of systemic risk contribution for nonmembers (top) and members (bot-
tom). Distributions of the average effect as a function of parameter uncertainty is on the left side
and as a function of units in the sample is on the right side.

thereafter onto connected member banks.33 Second, all of the top systemic risk contributors

in Table 4 were Federal Reserve members and over 70% of these banks received large injec-

tions from the Reconstruction Finance Corporation’s (RFC) recapitalization program. Jesse

Jones, Chairman of the RFC, noted that the bank-rescue agency paid particular attention

to large institutions in deciding which banks to grant assistance (Jones, 1951).34 If we allow

for the possibility that both of these mechanisms were operating, and given that, of the top

200 systemic risk contributors, only 10 were nonmembers (the survivorship rate for mem-

bers in the top 200 was 75%, whereas it was 50% for nonmembers), it seems reasonable to

conclude that this episode in financial history points to too-big-to-fail policies being applied

33There was considerable disagreement within the system about aiding nonmember banks, including con-
cerns about free riding by nonmembers (not contributing to upkeep or being subject to examination) as well
as whether paper presented as collateral was eligible for rediscounting – debates that were not resolved until
after the banking crises had subsided (Richardson and Troost, 2009).

34Note that the RFC application and examiner files do not report or comment on the bank’s correspondent
network. Only in the case of large institutions, such as Continental Illinois, does Jesse Jones mention the
network. He states that Continental was a “good correspondent” (Jones, 1951). Otherwise, for typical RFC
applicants, network information was not readily accessible on the required paperwork (Vossmeyer, 2016).
Calomiris et al. (2013) provide additional information on the RFC and the correspondent network.
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to well-connected Federal Reserve member banks. Policies designed to rescue banks that

were very interconnected in the correspondent network system is also noted in Gorton and

Tallman (2018). Appendix Figure A.2.1 shows that most exits from the network were small

to medium-sized banks.

As shown in Table 8, the branching intensity effect is positive, which is consistent with

Mitchener (2005, 2007), who finds that laws prohibiting branching raised suspension rates

for banks. Interestingly, the interaction between branch intensity and eigenvalue centrality is

negative, offsetting some of the positive effect from eigenvalue centrality. To understand the

magnitude of and differences in eigenvalue centrality’s impact on bank survival in branching

and non-branching areas, we compute covariate effects as in equation 15. The derivative

is taken with respect to xeigencent, and this effect is computed for the subsample of banks

operating in areas with branching (Branching Intensity 6= 0) and for the subsample of banks

located in areas with no branching (Branching Intensity = 0).

We find that the marginal effect of eigenvalue centrality in branching areas is 0.863 and

the marginal effect of eigenvalue centrality in non-branching areas is 1.051, 22% higher. The

distributions of these average effects as a function of parameter uncertainty and units in

the sample are presented in Figure 7. Thus, as the intensity of branch banking in an area

increases, the value of eigenvalue centrality and the correspondent network, in general, de-

creases. This result aligns with the understanding of the tension between the correspondent

network and branching. Large banks that opposed branching thought that, if branching were

allowed, small country banks would join the branching system, as opposed to seeking ser-

vices from correspondents. Thus, many large correspondents believed branch banking would

“jeopardize their profitable correspondent business” (Abrams and Settle, 1993). (Curtis,

1930, p. 179) states:

The development of branch banking will also tend to disrupt the present rela-

tionship of city and country bank correspondents. Certain metropolitan banks

will lose correspondents and business unless they, too, establish branches. But

the relationship of parent and branch will be much more direct and intimate and

dependable than that of correspondents and, therefore, the seasonal and panic
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demands for funds will be better cared for, and an economy will be realized

because it will no longer be necessary to carry balances with correspondents.

Indeed, the sign of the interaction provides statistical evidence of these competing network

forces. We show the effectiveness of the interbank network for bank survival diminishes in

areas where branching exists. Banks in branching areas had a higher probability of bank

survival, attributing more benefits to the branching system.

The results for the two interaction variables are large, statistically different from zero,

and have important general implications. The impact of the correspondent network is not

uniform and changes as one conditions on institutional structures and regulatory frameworks.

The experience of the Great Depression demonstrates this point using spatial variation in

Federal Reserve membership and branching laws.

Next, we consider two counterfactual scenarios: (i) how the probability of bank survivor-

ship would change if all commercial banks had joined the Federal Reserve System prior to

Figure 7: Marginal effects of eigenvalue centrality for non-branching areas (top) and branching
areas (bottom). Distributions of the average effect as a function of parameter uncertainty is on the
left side and as a function of units in the sample is on the right side.
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the start of the Depression and (ii) how the probability of bank survivorship would change

if the network had a random topology instead of a pyramid shape. The quantity we seek,

δcf , is the expected difference in computed pointwise probabilities as x†i (the original case)

is changed to x‡i (the counterfactual case):

δcf =
∫

[Pr
(
yi = 1|x†, β

)
− Pr

(
yi = 1|x‡, β

)
]f (x) π (β|y) dxdβ. (16)

For the Federal Reserve membership counterfactual, we take the sample of banks that

were not members (n = 16, 337) and generate an alternative covariate matrix x‡fed where

the indicators associated with Fed membership now equal 1. We find that the difference

in the probability of bank survival is -0.017. Thus, if nonmembers were granted Fed mem-

bership, their probability of bank survival is 1.7 percentage points higher than when they

were nonmembers. Figure 8 presents the distribution of this average effect as a function of

parameter uncertainty, which shows that it is statistically different from 0. Additionally, this

probability difference is computed holding all else fixed, so bank size, balance sheet, network

position, and location all remain constant. 1.7 percentage points translates to 278 additional

bank survivals. Universal Federal Reserve membership would have made a positive impact

on bank survival.

For the random network counterfactual, as in Section 3.2, we generate random networks

with the same number of nodes and the same mean degree as the 1929 network, resulting in a

new network adjacency matrix, Arn. Arn is then used to create new variables for eigenvector

centrality and systemic risk contribution. The vector R in the computation of systemic

risk remains the same, only the adjacency matrix is changing. We generate 100 different

random networks and average the variables across them, so the results are not specific to

a particular realization.35 With these new variables, we create a counterfactual covariate

matrix x‡rn, where eigenvector centrality and systemic risk contribution are computed from

random networks, and the effects of central reserve city and reserve city are removed. All of

the other variables (balance sheet size, ratios, location, etc.) remain the same. The covariate

matrix x‡rn represents the scenario where the pyramid-shape of the correspondent network

no longer exists and the network is flattened.

35The expected value of eigenvector centrality equals 1√
n

.
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We find that the difference in the probability of bank survival is −0.0103. Thus, if

the correspondent network had a random topology, the probability of bank survival is 1.03

percentage points higher than when the topology is pyramid-shaped. Figure 8 presents the

distribution of this average effect as a function of parameter uncertainty, which shows that

it is statistically different from 0. This difference translates to roughly 255 additional bank

survivals. While the parameter estimates show that subsets of banks benefitted from the

network and others were harmed by it, here we show that on average, the pyramid network

did more harm than good for bank survival during the Great Depression. This result aligns

with Acemoglu et al. (2015), who show that in times of large negative shocks, dense network

structures can be a source of economic instability.

Figure 8: Covariate effects of Federal Reserve membership (left) and random network topology
(right). The distributions are of the average effect as a function of parameter uncertainty.

Robustness checks, maximum likelihood estimates (with standard error adjustments),

OLS estimates, and information criteria for the probit specification are provided in Ap-

pendix A.4. We additionally show in the appendix that the estimated coefficients are robust

to including state fixed effects; however, the fixed effects lead to overfitting as the information

criteria do not favor the specification. Therefore, the results presented in this main body

are the strongest, and most supported by the data. Furthermore, Appendix A.5 presents an

ordered specification in which we disentangle mergers and failures from the “exit” group. In

the full sample, we coded exits as both mergers and failures, but these are clearly different

outcomes. We lack this type of detailed information on survival outcomes of state banks;

however, for national banks, we are able to further distinguish between types of exits. The
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results for the ordered specification on the subsample of national banks align with the binary

specification and show significant support in favor of a model that includes our bank-specific

systemic risk measures to predict the probability of bank survival, merger, and failure.

6 Conclusion

Using a new, hand-collected data set of correspondent linkages for all commercial banks,

we analyze systemic risk and network features on the eve of the Great Depression. We

then assess how the largest banking crisis of the 20th century altered banking network

properties and the concentration of risk. We combine interconnectedness and credit quality

of financial institutions in the system to produce a single measure of systemic risk, which

is decomposable into individual bank contributions. We find that the resulting failure of

over 9,000 banks increased systemic risk by 33%, a result that is both quantitatively and

statistically significant. Further, the banking crises of the early 1930s caused risk to become

more concentrated, with the 20 systemically-riskiest banks increasing their contribution to

systemic risk by 5 percentage points between 1929 and 1934.

We show that the pyramid-shape of the interbank network concentrated risk in particular

nodes and made the banking system in 1929 more fragile and prone to contagion risk, relative

to “random graph” and “bootstrapped scale-free” topologies, and increased the incidence

of failures by 255 banks. This finding of the network’s pyramid-shaped topology in 1929

– a relic from the pre-Fed era that had become “locked in” through state regulation of

nonmember banks – is a potentially important finding for policymakers. It highlights an

additional dimension on which systemic risk scoring should be analyzed, and it underscores

the self-reinforcing nature of networks, showing that “history can matter” when there is

the possibility of lock-in at a Pareto inferior equilibrium (Arthur, 1988, 1989; Farrell and

Shapiro, 1989; Gallini and Karp, 1989; Klemperer, 1987a,b; Beggs and Klemperer, 1992).

The results from our micro-analysis of the Great Depression suggest that, in modeling the

probability of bank survival, network position and systemic risk are key to the specification

and greatly improve the model’s sequential out-of-sample predictive fit. The analysis shows

that banks with higher ex ante default risk in 1929 were more likely to subsequently fail. And,
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unlike the Great Recession, financial distress tended to be concentrated in small and medium-

sized banks. For most banks in the system, systemic risk led to a higher probability of bank

failure. However, Federal Reserve members do not seem to experience these same negative

effects – a particularly interesting result in light of the actions taken by the Reconstruction

Finance Corporation (RFC) and recent policy discussions surrounding too-connected-to-fail

banks. Indeed, had all commercial banks become Fed members prior to the start of the

Depression, all else equal, we estimate this institutional change would have resulted in at

least 278 fewer bank failures. We also show that in areas where branch banking was intense,

the effectiveness of the correspondent network was weaker, demonstrating how the presence

of two different types of networks influenced survivability. Unfolding these differing locational

and institutional systemic risk and network results is only possible by studying the Great

Depression because current Federal Reserve policy and banking regulations are much more

uniform across the United States.

Our research reinforces another point emerging from recent work on the GFC: large

macro shocks may have different effects on the financial system depending on the structure

of network connections. Brunetti et al. (2019) analyze the interbank market around 2008 and

find that physical or stated network connectivity provides meaningful forecasts of subsequent

liquidity problems. Our analysis of the Great Depression, which also uses stated relationships

to examine bank survivorship, complements these findings. During the banking panics of

the 1930s, demand for liquidity soared. Smaller and medium-sized banks, which were unable

to procure liquidity, often failed. The uniqueness of the network topology during the Great

Depression and the vast geographical dispersion of bank failures offer new insights into the

analysis of systemic risk during crises, especially as the number of financial institutions in the

Great Depression was far higher than that exists in recent times. The nature and antecedents

of economic crises may change over decades, but the value of network analysis in measuring

and predicting systemic risk and its fallout remain robust across time.
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A Appendix

A.1 R as a Measure of Risk

Credit ratings are typically employed as the measure for internal balance sheet risk. However,
this is not available for our sample, leading us to make use of the eight asset and liability
categories we have from each bank’s balance sheet. As a result, we develop the measure R
which is the product of transformed leverage and inverse profitability risk score. To under-
stand how well R captures risk, we compare R to several standard balance sheet measures
that are often employed in banking studies. We mimic the balance sheet measures used in
Calomiris and Mason (2003). However, since we are studying all banks, instead of limiting
the sample to Federal Reserve members, we are unable to replicate all of the measures used
in that study as our balance sheet categories are not as granular. For comparison, we look
at how well each measure fits a probit model bank survival. The outcome variable for the
probit model equals 1 if the bank appears in 1934 and 0 otherwise.

Table A.1.1 presents the estimate of each risk measure, and the log-marginal likelihood
estimate and BIC of a model with only the tested risk measure and an intercept. The
composite risk score R has the highest marginal likelihood and lowest BIC, thus providing
evidence that the data support this as a measure of risk, relative to the 7 other measures
tested.

Table A.1.1: The log-marginal likelihood estimate and BIC associated with each model where only
an intercept and the risk measure are used as covariates in a probit model of bank survival.

Model and Risk Measure Estimate MargLik BIC

1. Composite Risk, R -0.073 (0.002) -15807.93 31588
2. Loans/Deposits Ratio -0.610 (0.029) -16360.28 32715
3. Non-Cash Assets/Total Assets Ratio -1.341 (0.043) -16144.65 32268
4. Loans/Total Assets Ratio -0.927 (0.044) -16350.35 32696
5. Bonds/Total Assets Ratio 1.442 (0.044) -16091.55 32162
6. ROA, Surplus & Profits /Total Assets 5.801 (0.163) -16155.61 32268
7. Total Assets/Equity 0.009 (0.002) -16520.83 33030
8. ln(1+Total Assets/Equity) 0.144 (0.019) -16506.97 33007
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A.2 Bank Exits

Between 1929 and 1934, the number of nodes in the network decreased by 36%. 9,238
banks exited the network, which is largely attributable to failures and mergers. Figure A.2.1
presents a histogram of all bank exits as a function of (log) total assets in 1929. For com-
parison purposes, the 25th, 50th, and 75th percentiles of the asset distribution for all banks
(not just exits) are displayed by the red dashed lines. Clearly, most of the banks that exited
the network were smaller than the median-sized bank in the system.

Figure A.2.1: Histogram of bank exits from the network by 1934 as a function of (log) total
assets in 1929. The red dashed lines represent the 25th, 50th, and 75th percentiles of the asset
distribution of the entire banking population (not just exits) in 1929.
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A.3 Counterfactuals

Table A.3.1 displays the simulation results for the hypothetical failure of the 10 systemically
riskiest banks in 1929. The simultaneous failure of all 10 would raise systemic risk by over
50%.

Table A.3.1: The percentage increase in systemic risk if any one of the top 10 banks by percentage
contribution to systemic risk fails.

Bank Name and Location % Change S

Continental Illinois Bank and Trust (Chicago, IL) 12.939
Chase National Bank (New York City, NY) 8.139
The National Bank of the Republic of Chicago (Chicago, IL) 1.967
First National Bank of Chicago (Chicago, IL) 5.120
Commerce Trust Company (Kansas City, MO) 2.452
National City Bank (New York City, NY) 4.729
First National Bank (Minneapolis, MN) 3.742
First National Bank in St. Louis (St. Louis, MO) 3.105
Central Hanover Bank and Trust (New York City, NY) 8.093
Guaranty Trust Company (New York City, NY) 4.360
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A.4 Robustness

Table A.4.1 shows the robustness of our results to additional specifications and estimation
methods. We present the maximum likelihood results for M1 and M2 when y is binary,
which align closely with the posterior means. Additionally, we report the information criteria
associated with each model. The model rankings from the information criteria are the same
as the marginal likelihood rankings. Column M2-S.E. reports the MLE results with robust
standard errors clustered at the county level, which do not change the statistical significance
of our parameter estimates.

The columns M3 and M4 report the results for both models with state fixed effects. The
main results are preserved, but the information criteria suggest overfitting. Therefore, we fo-
cus our analysis on M2. While omitted variables are always a concern in large-scale analyses,
the overfitting that stems from the models with state fixed effects suggests that our balance
sheet, correspondent network, county, and Federal Reserve measures are comprehensive at
explaining bank survival, outside of state geography. Lastly, M1-OLS and M2-OLS report
the results for both models when estimation is done by OLS.
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A.5 Ordered Specification

To obtain results for the population of commercial banks, our outcome variable combined
failures and mergers, but these outcomes clearly differ. We lack detailed information on sur-
vival outcomes of state banks; however, for national banks, we are able to further distinguish
between these types of exits using data from the Annual Report of the Comptroller of the
Currency (1929-1934). All national banks are, by definition, members of the Federal Reserve
System, and based on the full-sample results above, we know there are differences among
Fed and non-Fed members; hence, the smaller sample is not representative. The sample
of national banks is nevertheless useful for testing the robustness of our model comparison
results.

To do so, we again use two models with covariates that are the same as M1 and M2.
However, the outcome variable is now ordered and defined as:

yi =


3 Bank Survives γ3 > y∗i ≤ γ2
2 Bank Merges γ2 > y∗i ≤ γ1
1 Bank Fails γ1 > y∗i ≤ γ0,

(17)

and ε ∼ N(0, 1), i.e., an ordered probit model. 18% of the sample fail, 14% merge, and 68%
survive. The models are estimated by Gibbs sampling methods (Algorithm 2 in Jeliazkov
et al. (2008)), and the MLE parameter estimates align. The priors on β are centered at 0
with a standard deviation of 10 and the results are based on 10,000 MCMC draws with a
burn in of 1,000. Marginal likelihood calculations follow from Chib (1995) and Jeliazkov
et al. (2008).

Table A.5.1: Model comparison results for the two ordered models.

M1 M2

n 7,525 7,525
Log-Marginal Likelihood -7499.95 -7264.49
Posterior Model Probability 5.51× 10−103 ≈ 1

Table A.5.1 shows the model comparison results for the ordered probit models. As was
true for the full population of commercial banks, a comparison of marginal likelihood reveals
strong support for M2, with a posterior model probability of nearly 1. These results align
with the main findings in the paper and point to an additional important implication: a
specification including our new measures not only improves the prediction of bank failures,
but also those for bank mergers, an important observed outcome in most financial crises.
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